
 1 of 14 070103

OVERVIEW
As the performance of 8-bit microcontrollers continues to advance, so does the application complexity
into which these microcontrollers are embedded. These applications naturally demand larger amounts of
program and data memory. To satisfy this demand, many Dallas Semiconductor microcontroller products
incorporate user-selectable extended addressing modes. One of these extended addressing modes, the
contiguous addressing mode, is capable of supporting contiguous (flat) program/data memory ranges up
to 16MB. This application note demonstrates how to configure the Keil™ PK51 Version 6.11 and later
tools to support the contiguous addressing mode and illustrates how one might modify files and settings
to address an example DS80C390 memory configuration, which is provided. While the example focuses
on the DS80C390 microcontroller, the ideas and concepts discussed are easily adaptable to other devices
that support extended addressing, including the DS80C400, DS5240, and DS5250.

Contiguous Addressing Mode Requires Tool Support
Dallas Semiconductor microcontrollers that support the contiguous addressing mode also support the
traditional 16-bit 8051 addressing mode and an extended 24-bit (SFR-facilitated) paged mode. Of the
extended 24-bit addressing modes, the contiguous mode provides greater application benefit and is,
therefore, the only one fully supported by the Keil tools. Hence, the contiguous mode of operation is
discussed hereafter.

To support the extended contiguous addressing mode, some basic chip-hardware controls and
enhancements are implemented: a full 24-bit program counter, full 24-bit data pointers, and SFR bits to
selectively enable higher order address lines, program/data memory chip enables, and the contiguous
addressing mode itself. When the contiguous mode is enabled, to allow direct access to the full address
range, the cycle and/or operand byte count for several operations (ACALL, LCALL, AJMP, LJMP,
RET, RETI, and MOV DPTR, #data24) is increased from that of the standard 8051.

Detailed information about contiguous mode-modified instructions can be found in the User’s Guide that
corresponds with your Dallas Semiconductor microcontroller (www.maxim-ic.com/microcontrollers).

Since the modified instructions, in many cases, must be coded with an additional address byte, and since
program/data memory can now extend well beyond 64kB, the 8051 development tools must explicitly be
configured to support the contiguous addressing mode so as to generate executable program code that is
capable of reaching the extended memory ranges. Keil’s C51 tools (PK51 Version 6.11 and up), which
support the extended 8051 variants, can easily be configured to correctly produce code executable in the
contiguous addressing mode.

Keil is a trademark of Keil Software, Inc.

www.maxim-ic.com

Application Note 606

Configuring Keil PK51 Tools to Support
24-Bit Contiguous Addressing Mode

http://www.maxim-ic.com/MicroUserGuides.htm

AN606

 2 of 14

µVision2 Project Options à Select Device for Target
When creating a new project, you are prompted to select a CPU from the µVision2 device database.
Checkboxes are provided in the “Select Device for Target–CPU” dialog box for selecting the LX51 linker
in place of BL51 and the AX51 assembler in place of A51. To use the contiguous mode, both of these
boxes should be checked, as shown below. Both of these boxes have been checked for our DS80C390
example project (Figure 1).

Figure 1. SELECTION OF EXTENDED LINKER (LX51) AND ASSEMBLER
(AX51)

Enable these two options in the dialog box:
Project → Select Device for Target → CPU

(Note: AX51 checkbox may not be visible until the LX51 checkbox has been
checked)

AN606

 3 of 14

Startup and Initialization Code
The linker automatically uses the default startup (startup.a51) and init (init.a51) files from the
\c51\lib directory for a project when none have been included in the individual project directory. The
startup and init codes are executed after each system reset and are responsible for the following basic
operations:

§ Clearing data memory (idata, xdata, pdata) as defined by start, length file constants
§ Initializing the re-entrant stack and pointer for a given memory model (small, large, compact)
§ Initializing global c variables
§ Jump to main()

The default startup.a51 file does not contain the code necessary to establish memory chip-enable
boundaries or configure on-chip microcontroller hardware into the contiguous addressing mode. This
means that the default file is not capable of accessing/initializing all of the memory bytes that one might
want to initialize before proceeding to main(). To solve this problem, the startup file should be copied
into the individual project directory and customized.

AN606

 4 of 14

Customizing a Startup File for the DS80C390
The START390.A51 file provided by Keil Software already adds some settings specific to the
DS80C390 chip, and can be used as a starting point to minimize changes required to get your DS80C390
project rolling.

To define an extended contiguous memory map specific to your hardware within the START390.A51
file, code can be added to properly define (by SFR writes) the desired chip-enable output pins and the
memory sizes attached to those chip-enable pins. Example code and associated constants to accomplish
this memory definition are given below. This code, along with the code that invokes the contiguous
addressing mode, should be executed in the startup file before any attempts to access extended memory
areas. Additionally, the xdata initialization loop should allow intialization of xdata beyond the normal
64kB boundary. The START390.A51 file provided by Keil Software currently provides this extension
of the xdata initialization loop.

;---
; DS80C390 Chip Specific Constants
; P4CNT.5-3 defines maximum addressable memory per CEx or PCEx signal
P4CNT5_3 EQU 000B ; 000B = 32kB (A15-A0 enabled)
 ; 100B = 128kB (A16-A0 enabled)
 ; 101B = 256kB (A17-A0 enabled)
 ; 110B = 512kB (A18-A0 enabled)
 ; 111B = 1MB (A19-A0 enabled)
 ; other = invalid selection
; P4CNT.2-0 define which CEx signals to enable
P4CNT2_0 EQU 000B ; 000B = none
 ; 100B = enable CE0
 ; 101B = enable CE0, CE1
 ; 110B = enable CE0, CE1, CE2
 ; 111B = enable CE0, CE1, CE2, CE3
 ; other = invalid selection
; P5CNT.2-0 define which PCEx signals to enable
P5CNT2_0 EQU 000B ; 000B = none
 ; 100B = enable PCE0
 ; 101B = enable PCE0, PCE1
 ; 110B = enable PCE0, PCE1, PCE2
 ; 111B = enable PCE0, PCE1, PCE2, PCE3
 ; other = invalid selection
;---
; Code which makes use of DS80C390 chip specific constants
 MOV TA,#0xAA ; Enable access to P4CNT
 MOV TA,#0x55
P4CNT_VAL EQU (P4CNT5_3 SHL 3) OR (P4CNT2_0) ; address (Axx) and CEx enables
 MOV P4CNT,#P4CNT_VAL
 MOV TA,#0xAA ; Enable access to P5CNT
 MOV TA,#0x55
 MOV P5CNT,#P5CNT2_0 ; PCEx enables

AN606

 5 of 14

Customizing the INIT.A51 File for the DS80C390
To allow initialization of global far-memory variables within the contiguous addressing mode, the
following directives must be included in the init.a51 file. The customized init.a51 file should
then be added as the last file of your target project source files.

;--
; Far Memory Support
;
; If the C application contains variables in the far memory space that are
; initialized, you need to set the following define to 1.
;
; --- Set XBANK = 1 when far variables should be initialized
$set (XBANK = 1)
;--
; Dallas 390/400/5240 CPU Contiguous Mode
;
; If you are using the Dallas Contiguous Mode you need to set the following
; define to 1.
;
; --- Set DS390 = 1 when CPU runs in Dallas Contiguous Mode
$set (DS390 = 1)
;--

µVision2 Project Options à Options for Target
In the project à options for target à target dialog box, a “code rom size” selection should be made
from the list box options. Two contiguous mode options are available: “contiguous mode: 512kb
program” and “contiguous mode:16mb program.” When using the contiguous mode with less than 512kb
program code, select the “contiguous mode: 512kb program” size option so that the tools can optimally
generate 19-bit acall and ajmp instructions. If your program size is between 512kb and 16mb, select
the “contiguous mode: 16mb program” size so that 24-bit lcall and ljmp instructions are generated.

The “code rom size” selection configures all tools, including the debugger and simulator, for the extended
contiguous addressing mode. Please remember, however, that the proper startup code sequence must still
be included in your project in order for the chip hardware to be configured correctly.

For the DS80C390 CPU, the same Project à Options for Target à Target dialog box also contains a
checkbox to locate the 4kB on-chip SRAM at location 0xF000–0xFFFF. This checkbox should only be
checked if the IDM1:0 bits contained in the MCON SFR are used to define this specific address range for
the 4kB on-chip range. If the IDM1:0 bits define the 4kB SRAM address range to be elsewhere, the
checkbox should not be used. Instead, the correct location of the 4kB SRAM should be specified in the
“Off-chip Xdata memory RAM” start and size fields, or alternatively as a User class entry on the
Project à Options for Target à LX51 Locate dialog box. In order for the linker to recognize the
memory definitions specified in the Project à Options for Target à Target dialog box, the “Use
Memory Layout from Target Dialog” checkbox in the Project à Options for Target à LX51 Locate
dialog box must be checked. These two methods for defining specific HDATA address ranges are shown
in the figures below. Please remember, again, that this definition is for use by the Keil toolset and that the
proper startup code sequence must be included in your project in order for the chip hardware to be
configured correctly.

AN606

 6 of 14

Figure 2. ON-CHIP SRAM ADDRESS RANGE SPECIFIED BY “START,”
“SIZE” IN THE PROJECT à OPTIONS FOR TARGET à TARGET DIALOG
BOX

On-chip SRAM location specified in Start, Size fields.
Use On-chip XRAM Checkbox, which is NOT checked.

Note: Project à Options for Target à LX51 Locate: Use Memory
Layout from Target Dialog checkbox must also be checked.

AN606

 7 of 14

Figure 3. ON-CHIP SRAM ADDRESS MANUALLY SPECIFIED IN THE
PROJECT à OPTIONS FOR TARGET à LX51 LOCATE DIALOG BOX

Internal SRAM manually defined as User class. Note that this definition is in
addition to those defined in the Target dialog box.

AN606

 8 of 14

Additional Extended Memory Spaces and Types
In addition to the memory classes of the classic 8051 CPU, the extended 8051 tool chain adds three
additional memory classes (see list below). These memory classes are fully described in Keil’s
Assembler/Utilities User’s Guide (A51.pdf), Chapter 2 Architecture Overview, Extended 8051 Variants.

CLASS C51 MEMORY TYPE ALLOWS ADDRESSING OF . . .

HCONST const far Complete CODE space C:0–C:0xFFFFFF for
constant variables

HDATA far Complete XDATA space X:0–C:0xFFFFFF for
variables

ECODE C program code Complete CODE space for program code

The following example shows you how to use the “far” and “const far” memory types:

char far farray[0x300]; //this is a variable in HDATA space
const char far ctext[] = “This is a string in ECODE space”;

The “far” memory type support checkbox (shown in Figure 2) should be checked if you intend to use far
or far const memory types.

Function Pointers
Since the contiguous addressing mode supports up to 16MB of program space, it is no longer possible to
use code * as function pointers. You need to use a generic pointer when you define a function pointer.

AN606

 9 of 14

Example DS80C390 Memory Configuration
To demonstrate the utility of the startup file constants we’ve introduced and those which were already
present in Keil’s START390.A51 file, let us propose an example memory configuration for the
DS80C390 microcontroller. Suppose that we wish to allow 1MB of external code space by connecting a
512k x 8 memory device to each of the chip-enable signals CE0 , 1CE . We also want to have 1.5MB of
external data memory and we achieve this by connecting three 512k x 8 memories, one to each of the
peripheral chip-enable signals PCE0 , PCE1, and PCE2 . Shown below is a diagram of the interconnect and
the program/data memory map as determined thus far.

Figure 4. EXAMPLE DS80C390 PROGRAM/DATA MEMORY INTERFACE

512k X 8
FLASH

PROGRAM
MEMORY

D0–D7

A0–A7
A8–A15
A16–A18

Eo
CE

512k x 8
FLASH

PROGRAM
MEMORY

D0–D7

A0–A7
A8–A15
A16–A18

Eo

CE

VCC

AD7/D7
EA\
ALE
PSEN\
P2.7\A15
P2.6\A14
P2.5\A13
GND
VCC
P2.4/A12
P2.3/A11
P2.2/A10
P2.1/A9
P2.0/A8
P4.0/CE0 \
P4.1/CE1 \

P1.7/A7
RST

RSTOL
P3.0/RXD0
P3.1/TXD0
P3.2/INT0 \
P3.3/INT1 \

VCC
GND

P3.4/T0
P3.5/T1/CLKO

P3.6/WR\
P3.7/RD\

P5.7/PCE3 \
P5.6/PCE2 \
P5.5/PCE1 \

P1
.6

/A
6

P1

.5
/A

5

P1
.4

/A
4

P1

.3
/A

3

P1
.2

/A
2

P1

.1
/A

1

P1
.0

/A
0

G

N
D

V

C
C

A

D
0/

D
0

A

D
1/

D
1

A

D
2/

D
2

A

D
3/

D
3

A

D
4/

D
4

A

D
5/

D
5

A

D
6/

D
6

P5
.4

/P
C

E
0

\
P5

.3
/C

1T
X

P5
.2

/C
1R

X
P5

.1
/C

0R
X

P5
.0

/C
0T

X
V

C
C

X
TA

L2
X

TA
L1

G
N

D
M

U
X

\
P4

.7
/A

19
P4

.6
/A

18
P4

.5
/A

17
P4

.4
/A

16
P4

.3
/C

E
3

\
P4

.2
/C

E
2

\

DS80C390
512k x 8

DATA
MEMORY

D0–D7

A0–A7
A8–A15
A16–A18

Eo

WE

CE

512k x 8
DATA

MEMORY

D0–D7

A0–A7
A8–A15
A16–A18

Eo

WE

CE

512k x 8
DATA

MEMORY

D0–D7

A0–A7
A8–A15
A16–A18

Eo

WE

CE

AN606

 10 of 14

Figure 5. EXTERNAL PROGRAM/DATA MEMORY MAP (INTERNAL SRAM
STILL AT DEFAULT ADDRESSES)

In the case of the DS80C390, we must also consider the on-chip memory that is present and how/where
this memory should fit into our memory map. The DS80C390 contains the following internal memory:

§ (2) 256-byte RAMs that can be used as data, message center memory for the two CAN2.0B
controllers

§ (1) 1kB RAM that can be used as data, stack, program
§ (1) 3kB RAM that can be used as data, program

The logical address ranges for these internal RAMs are controlled by SFR bit settings and can be
configured within the startup file, resulting in a startup file further tailored toward DS80C390-based
projects. Once again, the START390.A51 file provided by Keil already includes constants and code to
assign location and function to this internal SRAM. For this example, we will use the (2) 256-byte RAMs
to support CAN activity, we will use the 1kB RAM as dedicated stack memory, and we will use the 3kB
RAM exclusively as MOVX data space. We also decide to define the logical addresses of the internal
RAM to a range (400000h–4011FFh) such that it does not interfere or overlap the external data memory
(000000h–0FFFFFh). Shown below is the memory map that has been updated to reflect our assignments
for the DS80C390 internal memory.

CE0 =512k x 8

CE1 =512k x 8

PROGRAM
MEMORY

DATA
MEMORY

PCE0 =512k x 8

PCE1 =512k x 8

PCE2 =512k x 8

000000h

0FFFFFh

080000h
07FFFFh

000000h

 100000h
0FFFFFh

080000h
07FFFFh

17FFFFh

INTERNAL
4kB SRAM

(1kB is stack)

INTERNAL
512-byte SRAM
(CAN0, CAN1)

00FFFFh

00F000h
00EFFFh

00EE00h

AN606

 11 of 14

Figure 6. COMBINED INTERNAL, EXTERNAL PROGRAM/DATA MEMORY
MAP

PROGRAM
MEMORY

DATA
MEMORY

CE0 =512k x 8

CE1 =512k x 8

PCE0 =512k x 8

PCE1 =512k x 8

PCE2 =512k x 8

000000h

0FFFFFh

080000h
07FFFFh

000000h

 100000h
0FFFFFh

080000h
07FFFFh

17FFFFh

4011FFh

401000h
400FFFh

~
~

~
~

INTERNAL
512-byte SRAM
(CAN0, CAN1)

INTERNAL
4kB SRAM

(1kB is stack)
400000h

AN606

 12 of 14

Assigning Values to Startup File Constants
Once we’ve decided on the desired memory configuration, we can assign appropriate values to the startup
file constants. Shown below are assignments for constants from the original START390.A51 file and for
those which we’ve added, allowing us to effect the example DS80C390 memory map earlier specified.

SA EQU 1 ; Use 1KB stack in on-chip XDATA space
IDM EQU 2 ; 2 = 4KB on-chip SRAM location X:0x400000 – X:400FFF
CMA EQU 1 ; 1 = CAN0 X:0x401000 – X:0x4010FF
 ; CAN1 X:0x401100 – X:0x4011FF
P4CNT5_3 EQU 110B ; 110B = 512kB (A18-A0 enabled)
P4CNT2_0 EQU 101B ; 101B = enable CE0, CE1
P5CNT2_0 EQU 110B ; 110B = enable PCE0, PCE1, PCE2

Testing for Correct Memory Access Per Our Startup File Definition
As a means to evaluate our startup file settings, we create a very simple C program (shown below) that
uses the FVAR and FCVAR macros to access far XDATA and ECODE memory. This code is easily
modified and can serve as a template for generating accesses to specific memory locations in order to
confirm proper hardware initialization and address/chip-enable generation.

#include <REG390.H>
#include <absacc.h>
void main (void) {
while (1) {
 ACC = FCVAR (unsigned char, 0x07ffff); // last address under CE0
 ACC = FCVAR (unsigned char, 0x080000); // first address under CE1
 ACC = FVAR (unsigned char, 0x07ffff); // last address under PCE0
 ACC = FVAR (unsigned char, 0x080000); // first address under PCE1
 ACC = FVAR (unsigned char, 0x0fffff); // last address under PCE1
 ACC = FVAR (unsigned char, 0x100000); // first address under PCE2
//---
// FVAR macro generates a call (return addr pushed onto the hardware stack), so
// the following read puts LSByte of the return address into ACC
//---
 ACC = FVAR(unsigned char, 0x400000); // first addr internal XRAM (stack)
}
}

Results
Using the above program, we see the following signal sequence on the oscillocope images (Figures 7 and
8) corresponding to our desired program/data memory interface.

CHIP-ENABLE ACCESS ACTIVITY
CE0 accesses with PSEN\ Program fetches from low 512kB and MOVC read to 07FFFFH
CE1 access with PSEN\ MOVC read to 080000H
PCE0 access with RD\ MOVX access to 07FFFFH
PCE1 access with RD\ MOVX access to 080000H
PCE1 access with RD\ MOVX access to 0FFFFFH

PCE2 access with RD\ MOVX access to 100000H

— MOVX operation to 400000H accesses internal XRAM and can
be verified by viewing the contents of ACC inside of the simulator

AN606

 13 of 14

Figure 7. PROGRAM MEMORY ACCESSES USING CE0 , CE1

AN606

 14 of 14

Figure 8. DATA MEMORY ACCESSES USING PCE0 , PCE1 , PCE2

