 DALLAS . Application Note 606
& DALEAS AMIAXIAM Configuring Keil PK51 Tools to Support
24-Bit Contiguous Addressing Mode

 www.maxim-ic.com
OVERVIEW

As the performance of 8-bit microcontrollers continues to advance, so does the application complexity
into which these microcontrollers are embedded. These applications naturally demand larger amounts of
program and data memory. To satisfy this demand, many Dallas Semiconductor microcontroller products
incorporate user-selectable extended addressing modes. One of these extended addressing modes, the
contiguous addressing mode, is capable of supporting contiguous (flat) program/data memory ranges up
to 16MB. This application note demonstrates how to configure the Keil PK51 Version 6.11 and later
tools to support the contiguous addressing mode and illustrates how one might modify files and settings
to address an example DS80C390 memory configuration, which is provided. While the example focuses
on the DS80C390 microcontroller, the ideas and concepts discussed are easily adaptable to other devices
that support extended addressing, including the DS80C400, DS5240, and DS5250.

Contiguous Addressing Mode Requires Tool Support

Dallas Semiconductor microcontrollers that support the contiguous addressing mode also support the
traditional 16-bit 8051 addressing mode and an extended 24-bit (SFR-facilitated) paged mode. Of the
extended 24-bit addressing modes, the contiguous mode provides greater application benefit and is,
therefore, the only one fully supported by the Keil tools. Hence, the contiguous mode of operation is
discussed hereafter.

To support the extended contiguous addressing mode, some basic chip-hardware controls and
enhancements are implemented: a full 24-bit program counter, full 24-bit data pointers, and SFR bits to
selectively enable higher order address lines, program/data memory chip enables, and the contiguous
addressing mode itself. When the contiguous mode is enabled, to allow direct access to the full address
range, the cycle and/or operand byte count for several operations (ACALL, LCALL, AJMP, LJIMP,
RET, RETI, and MOV DPTR, #data24) is increased from that of the standard 8051.

Detailed information about contiguous mode-modified instructions can be found in the User’s Guide that
corresponds with your Dallas Semiconductor microcontroller (www.maxim-ic.com/microcontrollers).

Since the modified instructions, in many cases, must be coded with an additional address byte, and since
program/data memory can now extend well beyond 64kB, the 8051 development tools must explicitly be
configured to support the contiguous addressing mode so as to generate executable program code that is
capable of reaching the extended memory ranges. Keil’s C51 tools (PK51 Version 6.11 and up), which
support the extended 8051 variants, can easily be configured to correctly produce code executable in the
contiguous addressing mode.

Keil is a trademark of Keil Software, Inc.

1 of 14 070103

http://www.maxim-ic.com/MicroUserGuides.htm

ANGO6

mVision2 Project Options > Select Device for Target

When creating a new project, you are prompted to select a CPU from the nVision2 device database.
Checkboxes are provided in the “ Select Device for Target—CPU” dialog box for selecting the LX51 linker
in place of BL51 and the AX51 assembler in place of A51. To use the contiguous mode, both of these
boxes should be checked, as shown below. Both of these boxes have been checked for our DS80C390
example project (Figure 1).

Figure 1. SELECTION OF EXTENDED LINKER (LX51) AND ASSEMBLER
(AX51)

Enable these two options in the dialog box:
Project® Select Device for Target® CPU

Select Device for Target 'Target 1' (Note: AX51 checkbox may not be visible until the LX51 checkbox has been
checked)
CPU

Wendor Dallas Semiconductor

Device: DSEOC390 Ilze Extended Linker [Lx51] instead of BL51

Farmnily: FC5-51 I1ze Extended Aszembler [4357] instead of A51

Data baze Dezcription:

= & D allaz Semiconductar =l 2051 bazed High-Speed Micro with 2 DPTRz, WWD'T, two Senal Ports, dual |

(L] DS5000(FF) 32 1/0 lines + addressddata bug, 3 Timers/Counters, 16 Inberupts43 priority
RO-lezz, 256 Bytes On-chip Bk + 4KB on-chip SR
!:.J DESIT) 1E6/32-bit math coprocessor
E_J D550M[FF) Addrezzes up to 4MB external memary, optional 10-Bit Stack Pointer
7] DER00Z(FF
[Ds&240
[Dpsaoc3to
[Dseoc3zo
[Dsaocaza
i:-J DS80C330
[DE8ACE20/D5830520
[Dsacs30
[Dsa7css0

! [W Y e a et Lo |:_|L| _J
0k | Cancel

20of 14

ANGO6

Startup and Initialization Code

The linker automatically uses the default startup (st art up. a51) and init (ni t . a51) files from the
\ ¢51\ | i b directory for a project when none have been included in the individual project directory. The
startup and init codes are executed after each system reset and are responsible for the following basic
operations:

= Clearing data memory (idata, xdata, pdata) as defined by start, length file constants

= [|nitializing the re-entrant stack and pointer for a given memory model (small, large, compact)
= |nitializing global c variables

= Jump to main()

The default st art up. a51 file does not contain the code necessary to establish memory chip-enable
boundaries or configure onchip microcontroller hardware into the contiguous addressing mode. This
means that the default file is not capable of accessing/initializing all of the memory bytes that one might
want to initialize before proceeding to main(). To solve this problem, the startup file should be copied
into the individual project directory and customized.

3of 14

ANGO6

Customizing a Startup File for the DS80C390

The START390. A51 file provided by Keil Software already adds some settings specific to the
DSB0C390 chip, and can be used as a starting point to minimize changes required to get your DS80C390
project rolling.

To define an extended contiguous memory map specific to your hardware within the START390. A51
file, code can be added to poperly define (by SFR writes) the desired chip-enable output pins and the
memory sizes attached to those chip-enable pins. Example code and associated constants to accomplish
this memory definition are given below. This code, aong with the code that invokes the contiguous
addressing mode, should be executed in the startup file before any attempts to access extended memory
areas. Additionaly, the xdata initiaization loop should allow intiaization of xdata beyond the normal
64kB boundary. The START390. A51 file provided by Keil Software currently provides this extension
of the xdata initialization loop.

DS80C390 Chi p Specific Constants
PACNT. 5- 3 defi nes maxi mum addressabl e menory per CEx or PCEx signha

PACNTS5_3 EQU 000B ; 000B = 32kB (Al15- A0 enabl ed)
; 100B = 128kB (Al16- A0 enabl ed)
; 101B = 256kB (Al17- A0 enabl ed)
; 110B = 512kB (A18- A0 enabl ed)
; 111B = 1MB (Al19- A0 enabl ed)
; other = invalid selection
; PACNT. 2-0 define which CEx signals to enable
PACNT2_0 EQU 000B ; 000B = none
;. 100B = enabl e CEO
101B = enabl e CEO, CE1l
: 110B = enabl e CEO, CE1l, CE2
; 111B = enabl e CEO, CE1, CE2, CE3
; other = invalid selection
; P5CNT. 2-0 define which PCEx signals to enable
P5CNT2 0 EQU 000B ; 000B = none
: 100B = enabl e PCEO
101B = enabl e PCEO, PCE1l
110B = enabl e PCEO, PCEl, PCE2
111B = enabl e PCEO, PCEl1l, PCE2, PCE3
other = invalid selection

; Code which makes use of DS80C390 chip specific constants

MOV TA, #0xAA ; Enabl e access to P4ACNT
MOV TA, #0x55
PACNT_VAL EQU (PACNT5_3 SHL 3) OR (P4ACNT2_0) ; address (Axx) and CEx enabl es
MOV PACNT, #P4CNT_VAL
MoV TA, #0xAA ;. Enabl e access to P5CNT
MOV TA, #0x55
MoV P5CNT, #P5CNT2_0 ; PCEx enabl es

40of 14

ANGO6

Customizing thel NI T. A51 File for the DS80C390

To dlow initidization of global far-memory variables within the contiguous addressing mode, the
following directives must be included in the i ni t. a51 file. The customized i ni t . a51 file should
then be added as the last file of your target project source files.

Far Menmory Support

If the C application contains variables in the far menory space that are
initialized, you need to set the following define to 1

; - Set XBANK = 1 when far vari abl es should be initialized
$set (XBANK = 1)

Dal | as 390/ 400/ 5240 CPU Conti guous Mode

If you are using the Dallas Contiguous Mdde you need to set the follow ng
define to 1.

- Set DS390 = 1 when CPU runs in Dallas Contiguous Mde
$set (DS390 = 1)

mVision2 Project Options - Options for Target

In the project - options for target > target dialog box, a “code rom size” selection should be made
from the list box options. Two contiguous mode options are available: “contiguous mode: 512kb
program” and “ contiguous mode: 16mb program.” When using the contiguous mode with less than 512kb
program code, select the “contiguous mode: 512kb program” size option so that the tools can optimally
generate 19-bit acal | and aj np instructions. If your program size is between 512kb and 16mb, select
the “ contiguous mode: 16mb program” size so that 24-bit| cal | and| j nmp instructions are generated.

The “code rom size” selection configures all tools, including the debugger and ssimulator, for the extended
contiguous addressing mode. Please remember, however, that the proper startup code sequence must till
be included in your project in order for the chip hardware to be configured correctly.

For the DSB0C390 CPU, the same Project - Optionsfor Target > Target dialog box also contains a
checkbox to locate the 4kB on-chip SRAM at location OXxFOOO-OxFFFF. This checkbox should only be
checked if the IDM1.:0 bits contained in the MCON SFR are used to define this specific address range for
the 4kB on-chip range. If the IDM1:0 bits define the 4kB SRAM address range to be elsewhere, the
checkbox should not be used. Instead, the correct location of the 4kB SRAM should be specified in the
“Off-chip Xdata memory RAM” start and size fields, or alternatively as a User class entry on the
Project - Options for Target - LX51 Locate dialog box. In order for the linker to recognize the
memory definitions specified in the Project > Options for Target - Target diaog box, the “Use
Memory Layout from Target Dialog” checkbox in the Project - Optionsfor Target - LX51 Locate
dialog box must be checked. These two methods for defining specific HDATA address ranges are shown
in the figures below. Please remember, again, that this definition is for use by the Kell toolset and that the
proper startup code sequence must be included in your project in order for the chip hardware to be
configured correctly.

50f 14

Figure 2. ON-CHIP SRAM ADDRESS RANGE SPECIFIED BY “START,”

“SIZE” IN THE PROJECT - OPTIONS FOR TARGET - TARGET DIALOG

BOX

Options for Target ‘Target 1°

Target | Output | Listing | €51 | 451 | 151 loca

[allas Semiconductar DS 80C330

On-chip SRAM location specified in Start, Size fields.
Use On-chip XRAM Checkbox, which is NOT checked.

Note: Project - Options for Target > LX51 Locate: Use Memory
Layout from Target Dialog checkbox must also be checked.

#hal [MHz]:

temary Model !Large: warables in =XDATA

[T Use On-chip Arithmetic Acceleratar

Code Bom Size: IEDntiguDus kode: 16kE program

[Use muliple DFTF registers

Cperating syztem: !Nu:une

Use On-chip #Fak [0=FO00-0=FFFF)

— Off-chip Code mermary

Start: Size:

— [Off-chip ®data

Start: Size:

EPIOM [3,0000 [04FFFFF

Fiam ;nxnnnn [T 7FFF

E prom I I

Fam ixemnnnn |EI:-:1 200

Epram l i

Farm i I

[T Code Banking Stark: End:

[V ‘'far' memaony type support

Banks: !:’ 'I

Bark Arear |0000 Iij--f.i?i-'F F

[T Save address extension SFR in intermupts

o]

Cancel Defaults

6of 14

ANGO6

Figure 3. ON-CHIP SRAM ADDRESS MANUALLY SPECIFIED IN THE
PROJECT - OPTIONS FOR TARGET - LX51 LOCATE DIALOG BOX

p— | |nternal SRAM manually defined as User class. Note that this definition is in
addition to those defined in the Target dialog box.

O stions for Target ‘Target 1'

Target | Output | Listing | C51 | 451 L<51 Locate | 61 Misc | Debug |

V¥ Use Memon Lapout from Target Dizlog

\Eesewe i

L [<DATA [:0x0-:0FFFF), HDATA [3:0x0::0x17FFFE), CODE [C:0x0-C:0=FFFF), |
F585 [FCODE [C:0=0-C:0«FFFFE]. HCOMST [C:0x0-C:0=FFFFE]]

_— — -

Ushg [HOATA [024000003 02401 1FF) =]
Classes [—

=

I zer =

Segmentz

=

Linker |10 "appcaontig'! i!

'3'3':1.“'3“ CLASSES [<DATA [:0x0-x:0xFFFF], HDATA [0«0 0:1 FFFFE), CODE [C:0=0-C:0=FFFF], =

ztring =

(] 4 I Cancel Defaultz

7of 14

ANGO6

Additional Extended Memory Spaces and Types

In addition to the memory classes of the classic 8051 CPU, the extended 8051 tool chain adds three
additional memory classes (see list below). These memory classes are fully described in Keil's
Assembler/Utilities User’s Guide (A51.pdf), Chapter 2 Architecture Overview, Extended 8051 Variants.

CLASS C51 MEMORY TYPE ALLOWSADDRESSING OF . ..
HCONST const far Complete CODE space C:0-C:0xFFFFFF for
constant variables
HDATA far Complete XDATA space X:0-C:0xFFFFFF for
variables
ECODE C program code Complete CODE space for program code

The following example shows you how to use the “far” and “const far” memory types.

char far farray[0x300]; //this is a variable in HDATA space
const char far ctext[] = “This is a string in ECODE space”;

The “far” memory type support checkbox (shown in Figure 2) should be checked if you intend to use far
or far const memory types.

Function Pointers

Since the contiguous addressing mode supports up to 16MB of program space, it is no longer possible to
use code * as function pointers. You need to use a generic pointer when you define a function pointer.

8of 14

ANGO6

Example DS80C390 Memory Configuration

To demondgtrate the utility of the startup file constants we've introduced and those which were aready
present in Kell's START390. A51 file, let us propose an example memory configuration for the
DS80C390 microcontroller. Suppose that we wish to allow 1IMB of external code space by connecting a

512k x 8 memory device to each of the chip-enable signals CE0, CEL. We also want to have 1.5MB of
external data memory and we achieve this by connecting three 512k x 8 memories, one to each of the

peripheral chip-enable signals PCEO, PCE1, and PCE2. Shown below is adiagram of the interconnect and

the program/data memory map as determined thus far.

Figure 4. EXAMPLE DS80C390 PROGRAM/DATA MEMORY INTERFACE

512k X 8 512k x 8
FLASH FLASH
MWI,NHO STRRERS PROGRAM PROGRAM
FEEEREROS><II<I << < DO-D7 < DO-D7
Qnnonmnamannn HD a0 A0-AT
PL7IA7 —— AD7/D7 A8-A15 A8-A15
RST O = A16-A18 = A16-A18
— —
. | m— —— PSEN\ = e
P3.UTXDO — F— r2na1s : OE <G
ggmmt —] F— P26\A14 CE |_> CE
x —] P2.5\A13
" S DS80C390 = r
GND — — vcc
P3.4IT0 — — P2.4/A12 512k x 8 512k x 8 512k x 8
v 1 P23iA1l DATA DATA DATA
: —]
—— Pe.IRO\ — = Fino MEMORY MEMORY MEMORY
P5.7/PCE3\ —] — > = =
— PSE/PCE2\ — —— rsoceo — DO-D7 DO-D7 DO-D7
— PS5/PCE1\ — —— Pa1/cEL
AO0-A7 AO0-A7 AO0-A7
ononuurura o ‘ Ao Ao A AIS _3» oo
vlviviulubeiues ST Al6-A18 = A16-A18 = | Al6-A18
SrEEEGIIEXIESEHDY
903088 EE038S5500 » o < —» oF
So8sS XX FiFigy S e G e <
geEs e - i i i
\Y/e'e; CE CE CE

9of 14

ANGO6

Figure 5. EXTERNAL PROGRAM/DATA MEMORY MAP (INTERNAL SRAM
STILL AT DEFAULT ADDRESSES)

PROGRAM DATA
MEMORY MEMORY
— 17FFFFh
pce2 =512k x 8
100000h
OFFFFFh — — OFFFFFh
CE1 =512k x € PeEL =512k X 8
— 00FFFFh
080000h _080000h INTERNAL
07FFFFh 07FFFFh 4kB SRAM
(1kB is stack) 00F000h
PCEO =512k X & ~ 00EFFFh
CEo0 =512k X 8 INTERNAL
———————— 512-byte SRAM
""" (CANO, CAN1)
000000h — — 000000h — 00EEOOh

In the case of the DS80C390, we must also consider the onchip memory that is present and how/where
this memory should fit into our memory map. The DSB0C390 contains the following internal memory:

= (2) 256-byte RAMs that can be used as data, message center memory for the two CANZ2.0B
controllers

= (1) 1kB RAM that can be used as data, stack, program

= (1) 3kB RAM that can be used as data, program

The logical address ranges for these internal RAMs are controlled by SFR bit settings and can be
configured within the startup file, resulting in a startup file further tailored toward DS80C390-based
projects. Once again, the START390. A51 file provided by Keil already includes constants and code to
assign location and function to this internal SRAM. For this example, we will use the (2) 256-byte RAMs
to support CAN activity, we will use the 1kB RAM as dedicated stack memory, and we will use the 3kB
RAM exclusively as MOV X data space. We also decide to define the logical addresses of the internal
RAM to a range (400000h-4011FFh) such that it does not interfere or overlap the external data memory
(OO0000h-OFFFFFh). Shown below is the memory map that has been updated to reflect our assignments
for the DSB0C390 internal memory.

10 of 14

ANGO6

Figure 6. COMBINED INTERNAL, EXTERNAL PROGRAM/DATA MEMORY

MAP

OFFFFFh —

080000h
07FFFFh —

000000h —

PROGRAM DATA

MEMORY MEMORY
— 4011FFh

INTERNAL

512-byte SRAM

(CANO, CAND) | 451000h
~ 400FFFh

INTE RNAL

4kB SRAM

(1kB is stack)
— 400000h
— 17FFFFh
pcE2 =512k x 8
100000h
~ OFFFFFh
CE1 =512k x & PCEL =512k x 8
080000h
"~ O7FFFFh
CEo0 =512k x & PCE0 =512k X 8

— 000000h

11 of 14

ANGO6

Assigning Values to Startup File Constants

Once we' ve decided on the desired memory configuration, we can assign appropriate values to the startup
file constants. Shown below are assignments for constants from the original START390. A51 file and for
those which we've added, allowing us to effect the example DS80C390 memory map earlier specified.

SA EQU 1 ; Use 1KB stack in on-chip XDATA space
| DM EQU 2 ; 2 = 4KB on-chi p SRAM | ocati on X: 0x400000 — X: 400FFF
CMA EQU 1 ;1 = CANO X: 0x401000 — X: Ox4010FF

CAN1 X: 0x401100 — X: Ox4011FF

PACNT5_3 EQU 110B ; 110B = 512kB (A18- A0 enabl ed)
PACNT2_ 0 EQU 101B ; 101B = enabl e CEO, CEl
P5CNT2_0 EQU 110B ; 110B = enabl e PCEO, PCEl, PCE2

Testing for Correct Memory Access Per Our Startup File Definition

As a means to evaluate our startup file settings, we create a very simple C program (shown below) that
uses the FVAR and FCVAR macros to access far XDATA and ECODE memory. This code is easily
modified and can serve as a template for generating accesses to specific memory locations in order to
confirm proper hardware initialization and address/chip-enable generation.

#i ncl ude <REG390. H>

#i ncl ude <absacc. h>

void main (void) {

while (1) {
ACC = FCVAR (unsigned char, 0x07ffff); // |ast address under CEO
ACC = FCVAR (unsi gned char, 0x080000); // first address under CEl
ACC = FVAR (unsigned char, 0Ox07ffff); /1 last address under PCEQ
ACC = FVAR (unsigned char, 0x080000); /1l first address under PCEl
ACC = FVAR (unsigned char, OxOfffff); /1 last address under PCEl
ACC = FVAR (unsigned char, 0x100000); /1 first address under PCE2

/1 FVAR macro generates a call (return addr pushed onto the hardware stack), so
/1 the follow ng read puts LSByte of the return address into ACC
I e R

ACC = FVAR(unsi gned char, 0x400000); /1 first addr internal XRAM (stack)
}
}
Results

Using the above program, we see the following signal sequence on the oscillocope images (Figures 7 and
8) corresponding to our desired program/data memory interface.

CHIP-ENABLE ACCESS ACTIVITY

CEOQ accesses with PSEN\ Program fetches from low 512kB and MOV C read to O7FFFFH

CE1 accesswith PSEN\ MOV C read to 080000H

PCEOQ access with RD\ MOV X access to O7FFFFH

PCE1 access with RD\ MOV X access to 080000H

PCE1 access with RD\ MOV X access to OFFFFFH

PCE2 access with RD\ MOV X access to 100000H

. MOV X operation to 400000H accesses internal XRAM and can
be verified by viewing the contents of ACC insde of the ssmulator

12 of 14

ANGO6

Figure 7. PROGRAM MEMORY ACCESSES USING cko, ce1

13 of 14

FSEM*

P40 (CEOY)

§ Pa1(CETY)

| P54 pcEDy
j - for reference --

ANGO6

Figure 8. DATA MEMORY ACCESSES USING prceo, PCE1, PCE2

F3.7 (RDw)

FS.4 (PCEOY)

PS5 (PCETY)

| FS6(PCEZY)

‘Ch1° 500V Ch2 5.00V M4.00us A Chl L 2.30V

TEFRIE

14 of 14

